Теорема о вертикальных углах: различия между версиями

Материал из wiki.spbal.ru
Перейти к навигации Перейти к поиску
 
(не показано 14 промежуточных версий 2 участников)
Строка 1: Строка 1:
<strong>Вертикальные углы равны</strong>
+
==Формулировка==
 +
[[Вертикальные углы]] равны
  
  
[[Файл:vert.png]]
+
[[Файл:vertical.png|thumb|Вертикальные углы]]
 +
==Доказательство==
  
<p><u>Доказательство:</u>
+
1. Углы <math>\angle 1</math> и <math>\angle 2</math> &ndash; смежные, значит <math>\angle 1 + \angle  2 = 180^\circ</math>.
  
<p>1. Углы <math>\angle 1</math> и <math>\angle 2</math> -- смежные, и дают в сумме <math>180^\circ</math>.
+
2. Углы <math>\angle 3</math> и <math>\angle 2</math> &ndash; смежные, значит <math>\angle 3 + \angle  2 = 180^\circ</math>.
  
<p>2. Углы <math>\angle 3</math> и <math>\angle 2</math> -- смежные, и дают в сумме <math>180^\circ</math>.
+
3. <math>\angle 1 = 180^\circ -\angle 2</math>
 
 
<p>3. <math>\angle 1 = 180^\circ -\angle 2</math>
 
  
 
<p>4. <math>\angle 3 = 180^\circ -\angle 2</math>
 
<p>4. <math>\angle 3 = 180^\circ -\angle 2</math>
  
<p>5. Значит, <math> \angle 1 = \angle 3 </math>
+
<p>5. Значит, <math> \angle 1 = \angle 3 </math>, '''ч.т.д.'''

Текущая версия на 19:40, 9 февраля 2020

Формулировка

Вертикальные углы равны


Вертикальные углы

Доказательство

1. Углы и – смежные, значит .

2. Углы и – смежные, значит .

3.

4.

5. Значит, , ч.т.д.